MicroRNA Mediating Networks in Granulosa Cells Associated with Ovarian Follicular Development
نویسندگان
چکیده
Ovaries, which provide a place for follicular development and oocyte maturation, are important organs in female mammals. Follicular development is complicated physiological progress mediated by various regulatory factors including microRNAs (miRNAs). To demonstrate the role of miRNAs in follicular development, this study analyzed the expression patterns of miRNAs in granulosa cells through investigating three previous datasets generated by Illumina miRNA deep sequencing. Furthermore, via bioinformatic analyses, we dissected the associated functional networks of the observed significant miRNAs, in terms of interacting with signal pathways and transcription factors. During the growth and selection of dominant follicles, 15 dysregulated miRNAs and 139 associated pathways were screened out. In comparison of different styles of follicles, 7 commonly abundant miRNAs and 195 pathways, as well as 10 differentially expressed miRNAs and 117 pathways in dominant follicles in comparison with subordinate follicles, were collected. Furthermore, SMAD2 was identified as a hub factor in regulating follicular development. The regulation of miR-26a/b on smad2 messenger RNA has been further testified by real time PCR. In conclusion, we established functional networks which play critical roles in follicular development including pivotal miRNAs, pathways, and transcription factors, which contributed to the further investigation about miRNAs associated with mammalian follicular development.
منابع مشابه
DIFFERENTIATION OF HUMAN OVARIAN FOLLICULAR GRANULOSA CELLS INTO KERATINOCYTES
Background & Aims: Stem cells are undifferentiated cells and are found in different tissues. These cells have capacity of self-renewal and differentiation into other lineages. Granulosa cells (GCs) are the multipotent stem cells. In the present research we evaluated the differentiation potential of GCs into keratinocytes. Material & Methods: GCs were cultured after enzymatic isolation from ova...
متن کاملIsolation of common carp ovarian follicular cells and evaluation of their endocrine activity in primary cell culture
To study viability and activity of isolated common carp, Cyprinus carpio, ovarian follicular cells (granulosa and theca cells), 17- α -Hydroxy progesterone (17 α -OHP) and 17 β -Estradiol (E2) levels were estimated in the culture media of cultivated carp ovarian follicular cells, using radioimmunoassay (RIA). Oocytes were isolated from the ovaries of female carp. Interstitial tissue was manua...
متن کاملFeed restriction inhibits early follicular development in young broiler-breeder hens
Ad libitum feeding causes excessive follicular development and is associated with extensive metabolic changes in broiler-breeder hens. Restricting feed intake reduces excessive follicular development, but the mechanisms mediating this response are unknown. In the present study, the effects of feeding on follicular development in immature broiler-breeder hens were examined. There was an increase...
متن کاملDownregulation of microRNA‑146a inhibits ovarian granulosa cell apoptosis by simultaneously targeting interleukin‑1 receptor‑associated kinase and tumor necrosis factor receptor‑associated factor 6.
Premature ovarian failure (POF), an ovarian disorder of multifactorial origin, is defined as the occurrence of amenorrhea, hypergonadotropism and hypoestrogenism in females <40 years old. Apoptosis of ovarian granulosa cells is important in POF and understanding the regulatory mechanism underlying ovarian granulosa cell apoptosis may be beneficial for the management of POF. Increasing evidence ...
متن کاملAndrogens regulate ovarian follicular development by increasing follicle stimulating hormone receptor and microRNA-125b expression.
Although androgen excess is considered detrimental to women's health and fertility, global and ovarian granulosa cell-specific androgen-receptor (AR) knockout mouse models have been used to show that androgen actions through ARs are actually necessary for normal ovarian function and female fertility. Here we describe two AR-mediated pathways in granulosa cells that regulate ovarian follicular d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017